Skip to contents

Hamming distance is calculated as the number of base differences between two sequences which can be expressed as a count or a proportion. Typically, it is calculated between two sequences of equal length. In the context of DArT trimmed sequences, which differ in length but which are anchored to the left by the restriction enzyme recognition sequence, it is sensible to compare the two trimmed sequences starting from immediately after the common recognition sequence and terminating at the last base of the shorter sequence.

Usage

gl.report.hamming(
  x,
  rs = 5,
  threshold = 3,
  taglength = 69,
  plot.out = TRUE,
  plot_theme = theme_dartR(),
  plot_colors = two_colors,
  probar = FALSE,
  save2tmp = FALSE,
  verbose = NULL
)

Arguments

x

Name of the genlight object containing the SNP data [required].

rs

Number of bases in the restriction enzyme recognition sequence [default 5].

threshold

Minimum acceptable base pair difference for display on the boxplot and histogram [default 3].

taglength

Typical length of the sequence tags [default 69].

plot.out

Specify if plot is to be produced [default TRUE].

plot_theme

Theme for the plot. See Details for options [default theme_dartR()].

plot_colors

List of two color names for the borders and fill of the plots [default two_colors].

probar

If TRUE, then a progress bar is displayed on long loops [default TRUE].

save2tmp

If TRUE, saves any ggplots and listings to the session temporary directory (tempdir) [default FALSE].

verbose

Verbosity: 0, silent or fatal errors; 1, begin and end; 2, progress log; 3, progress and results summary; 5, full report [default 2, unless specified using gl.set.verbosity].

Value

Returns unaltered genlight object

Details

The function gl.filter.hamming will filter out one of two loci if their Hamming distance is less than a specified percentage

Hamming distance can be computed by exploiting the fact that the dot product of two binary vectors x and (1-y) counts the corresponding elements that are different between x and y. This approach can also be used for vectors that contain more than two possible values at each position (e.g. A, C, T or G).

If a pair of DNA sequences are of differing length, the longer is truncated.

The algorithm is that of Johann de Jong https://johanndejong.wordpress.com/2015/10/02/faster-hamming-distance-in-r-2/ as implemented in utils.hamming

Plots and table are saved to the session's temporary directory (tempdir)

Examples of other themes that can be used can be consulted in

Author

Custodian: Arthur Georges – Post to https://groups.google.com/d/forum/dartr

Examples

 # \donttest{
gl.report.hamming(testset.gl[,1:100])
#> Starting gl.report.hamming 
#>   Processing genlight object with SNP data
#>   Calculating pairwise Hamming distances between trimmed 
#>                 Reference sequence tags
#>   Plotting boxplot and histogram of Hamming distance, 
#>                     showing a threshold of 3 bp [HD 0.05 ]
#>     No. of loci = 100 
#>     No. of individuals = 250 
#>     Minimum Hamming distance:  0 
#>     Maximum Hamming distance:  0.86 
#>     Mean Hamming Distance 0.66+/-0.077 SD
#>     No. of pairs with Hamming Distance less than or equal to 3 base pairs: 2 
#> 

#>    Quantile Threshold Retained Percent Filtered Percent
#> 1      100% 0.8550725        2     0.0     4948   100.0
#> 2       95% 0.7681159      334     6.7     4616    93.3
#> 3       90% 0.7536232      525    10.6     4425    89.4
#> 4       85% 0.7391304      864    17.5     4086    82.5
#> 5       80% 0.7246377     1179    23.8     3771    76.2
#> 6       75% 0.7200000     1264    25.5     3686    74.5
#> 7       70% 0.7101449     1567    31.7     3383    68.3
#> 8       65% 0.6956522     1999    40.4     2951    59.6
#> 9       60% 0.6956522     1999    40.4     2951    59.6
#> 10      55% 0.6811594     2381    48.1     2569    51.9
#> 11      50% 0.6744186     2480    50.1     2470    49.9
#> 12      45% 0.6666667     2871    58.0     2079    42.0
#> 13      40% 0.6538462     2971    60.0     1979    40.0
#> 14      35% 0.6500000     3238    65.4     1712    34.6
#> 15      30% 0.6376812     3548    71.7     1402    28.3
#> 16      25% 0.6231884     3767    76.1     1183    23.9
#> 17      20% 0.6086957     3992    80.6      958    19.4
#> 18      15% 0.5869565     4209    85.0      741    15.0
#> 19      10% 0.5652174     4458    90.1      492     9.9
#> 20       5% 0.5217391     4704    95.0      246     5.0
#> 21       0% 0.0000000     4950   100.0        0     0.0
#> Completed: gl.report.hamming 
#> 
gl.report.hamming(testset.gs[,1:100])
#> Starting gl.report.hamming 
#>   Processing genlight object with Presence/Absence (SilicoDArT) data
#>   Calculating pairwise Hamming distances between trimmed 
#>                 Reference sequence tags
#>   Plotting boxplot and histogram of Hamming distance, 
#>                     showing a threshold of 3 bp [HD 0.05 ]
#>     No. of loci = 100 
#>     No. of individuals = 218 
#>     Minimum Hamming distance:  0.03 
#>     Maximum Hamming distance:  0.86 
#>     Mean Hamming Distance 0.68+/-0.066 SD
#>     No. of pairs with Hamming Distance less than or equal to 3 base pairs: 4 
#> 

#>    Quantile  Threshold Retained Percent Filtered Percent
#> 1      100% 0.85714286        1     0.0     4949   100.0
#> 2       95% 0.76811594      318     6.4     4632    93.6
#> 3       90% 0.75362319      528    10.7     4422    89.3
#> 4       85% 0.73913043      829    16.7     4121    83.3
#> 5       80% 0.72463768     1175    23.7     3775    76.3
#> 6       75% 0.72131148     1244    25.1     3706    74.9
#> 7       70% 0.71014493     1623    32.8     3327    67.2
#> 8       65% 0.70270270     1740    35.2     3210    64.8
#> 9       60% 0.69565217     2102    42.5     2848    57.5
#> 10      55% 0.68888889     2229    45.0     2721    55.0
#> 11      50% 0.68115942     2560    51.7     2390    48.3
#> 12      45% 0.67213115     2740    55.4     2210    44.6
#> 13      40% 0.66666667     3126    63.2     1824    36.8
#> 14      35% 0.65573770     3224    65.1     1726    34.9
#> 15      30% 0.65217391     3490    70.5     1460    29.5
#> 16      25% 0.63888889     3723    75.2     1227    24.8
#> 17      20% 0.63265306     3976    80.3      974    19.7
#> 18      15% 0.61904762     4216    85.2      734    14.8
#> 19      10% 0.60000000     4469    90.3      481     9.7
#> 20       5% 0.57500000     4705    95.1      245     4.9
#> 21       0% 0.02898551     4950   100.0        0     0.0
#> Completed: gl.report.hamming 
#> 
# }

#' # SNP data
test <- platypus.gl
test <- gl.subsample.loci(platypus.gl,n=50)
#> Starting gl.subsample.loci 
#>   Processing genlight object with SNP data
#>   Warning: data include loci that are scored NA across all individuals.
#>   Consider filtering using gl <- gl.filter.allna(gl)
#>   Warning: Dataset contains monomorphic loci which will be included in the gl.subsample.loci selections
#>   Subsampling at random 50 loci from dartR object 
#> Completed: gl.subsample.loci 
#> 
result <- gl.filter.hamming(test, threshold=0.25, verbose=3)
#> Starting gl.filter.hamming 
#>   Processing genlight object with SNP data
#>   Note: Hamming distance ranges from zero (sequence identity)
#>                 to 1 (no bases shared at any position)
#>   Note: Calculating pairwise Hamming distances between trimmed 
#>                 reference sequence tags
#>   Filtering loci with a Hamming Distance of less than 0.25 
#> 

#>   Summary of filtered dataset
#>     Initial No. of loci: 50 
#>     Hamming d > 0.25 = 17 bp
#>     Loci deleted 0 
#>     Final No. of loci: 50 
#>     No. of individuals: 81 
#>     No. of populations:  3 
#> Completed: gl.filter.hamming 
#>